SRI DHARMASTHALA MANJUNATHESHWARA COLLEGE (AUTONOMOUS)

UJIRE - 574 240

DAKSHINA KANNADA, KARNATAKA STATE

(Re-Accredited by NAAC at 'A++' Grade) Ph: 08256-236221, 236101(O), Fax: 236220 e-Mail:sdmcollege@rediffmail.com, <u>sdmcollege@sdmcujire.in</u>, Website: www.sdmcujire.in

DEPARTMENT OF STATISTICS

Syllabus of Bachelor's Degree in STATISTICS

CHOICE BASED CREDIT SYSTEM SEMESTER SCHEME UNDER NEW EDUCATION POLICY 2020 2021-22 ONWARDS (EFFECTIVE FROM ACADEMIC YEAR 2023-24)

BOS meeting held on 09-02-2024 Academic Council meeting, held on 23-03-2024

SDM COLLEGE (AUTONOMOUS), UJIRE DEPARTMENT OF STATISTICS SYLLABUS -THREE YEARS UNDERGRADUATE PROGRAMME

Preamble

The BOS in Statistics of S.D.M College(Autonomous),Ujire has framed and proposed the syllabi for I to VI semester B.Sc. with Statistics subject as one of the major(s)as per the Regulations Governing the Choice Based Credit System (CBCS) Semester Scheme with Multiple Entry and Exit Options in the Undergraduate, and Postgraduate Degree Programmes under the Faculty of Science from the academic year 2021-2022.The titles of the Core papers and elective papers have been listed as per the Karnataka State Higher Education Council (KHSC) Statistics model syllabus prepared by Statistics subject expert committee.

Statistics as the technology of data analysis and decision making under uncertainty has expanded vastly in the past few decades. It's descriptive and inferential roles not only formulate the basis of growth of almost all the disciplines of the contemporary world but also provide an array of employment avenues in industry, academia, computer software companies, government and R&D organizations. Candidates successfully completing the B.Sc.(Honors) or B.Sc. and M.Sc. in Statistics program will have good knowledge and expertise to work as statistical consultant for the analysis of all kinds of data, pursue Ph.D. in Statistics, work in software industry as domain experts and use the Statistical Knowledge effectively in academic institutions, Industry, Government and Research Institutions.

Eligibility for Admission to B.Sc.Statistics (Basic/Hons) and M.Sc. (Statistics):

- Only those Candidates who have passed 10+2 level or equivalent with Mathematics as one of the subjects are eligible for admission to B.Sc. Statistics.
- Candidates must opt Mathematics as one of the majors along with Statistics during first two years(I to IV semesters of the undergraduate(UG Programme) are eligible for admission to M.Sc. Statistics

Programme objectives

- To enhance Subject knowledge of all branches of Statistics with exposure to new and recent developments in Statistics
- To develop Experimental skills/Communication and Learning skills

- To enable ICT exposure through computer simulation experiments/presentations
- To have Research exposure through SRPs
- To develop Additional skills in the field of interest through CC
- To develop Scientific approach in attitude and reasoning, creativity and innovative ideas

Programme Outcomes(POs)

By the end of the program the students will be able to:

- 1. Acquire fundamental/systematic or coherent understanding of the academic field of Statistics and its different learning areas and applications.
- 2. Develop and demonstrate an ability to understand major concepts in various disciplines of Statistics.
- Demonstrate the ability to use skills in Statistics and different practicing areas for formulating and tackling Statistics related problems, identifying and applying appropriate principles and methodologies to solve a wide range of problems associated with Statistics.
- 4. Understand procedural knowledge that creates different types of professionals related to subject area of Statistics, including professionals engaged in government/public service and private sectors.
- 5. Plan and execute Statistical experiments or investigations, analyze and interpret data/information collected using appropriate methods, including the use of appropriate statistical software including programming languages, and report accurately the findings of the experiment/investigations.
- 6. Have a knowledge regarding use of data analytics tools like Excel and R-programming.
- 7. Developed ability to critically assess a standard report having graphics, probability statements.
- 8. Analyze, interpret the data and hence help policy makers to take a proper decision.
- 9. Recognize the importance of statistical modeling and computing to analyze the real problems using various statistical tools.
- 10. Demonstrate relevant generic skills and global competencies such as
 - Problem-solving skills that are required to solve different types of Statistics related problems with well-defined solutions, and tackle open-ended problems, that belong to the disciplinary-area boundaries;
 - (ii) Investigative skills, including skills of independent thinking of Statistics-related issues

and problems;

- (iii) Communication skills involving the ability to listen carefully, to read texts and reference material analytically and to present information in a concise manner to different groups/audiences of technical or popular nature;
- (iv) Analytical skills involving paying attention to details and ability to construct logical Arguments using correct technical language related to Statistics and ability to translate them with popular language when needed;
- (v) ICT skills;
- (vi) Personal skills such as the ability to work both independently and in a group.
- 11. Undertake research projects by using research skills- preparation of questionnaire, conducting sample survey, research projects using sample survey, sampling techniques.
- 12. Understand and apply principles of least squares to fit a regression model to the given data, study the association between the variables, applications of Probability Theory and Probability Distributions.

Type of Course	Formative	Summative Assessment
	Assessment/IA	
Theory	40	60
Practicals	25	25(20+05(For Record book))
Projects	50	0
Experimental Learning (Internships,etc.)	40	60

Assessment

Weightage for assessments (in percentage)

Programme Structures with options

The programmes are flexible enough to allow liberty to students in designing them according to the requirements.

 Students choose Two Major subject/disciplines along with Languages, Generic Electives, Ability Enhancement, Skill Development and Vocational courses, including Extracurricular Activities.

- Exit with Certificate upon the Successful Completion of the First Year with 50 credits (Two Semesters) of the multidisciplinary Four-year Undergraduate Programme / Five-year Integrated Master's Degree Programme.
- Exit with Diploma upon the Successful Completion of the Second Year with 100 credits (FourSemesters) of the multidisciplinary Four-year Undergraduate Programme/Five-year Integrated Master's Degree Programme.
- Exit with Basic Bachelor Degree at the Successful Completion of the Third Year with 142- 146 credits(Six Semesters) of the multidisciplinary Four- year Undergraduate Programme /Five- year Integrated Master's Degree Programme.
- Exit with Bachelor Degree with Honours in a Discipline at the Successful Completion of the Fourth Years with 184-188 credits (Eight Semesters) of the multidisciplinary Four-year Undergraduate Programme/Five-year Integrated Master's Degree Programme.

		Summary of Discipline Specific						
	Courses (DSC)							
Semester	Course	Title of the Paper	Credits					
	Code							
	DSC A1	Descriptive Statistics	4					
I		Practicals based on DSC A1	2					
		Probability and Distributions	4					
	DSC A2							
II		Practicals based on DSC A2	2					
	DSC A3	Calculus and Probability Distributions	4					
III		Practicals based on DSC A3	2					
	DSC A4	Statistical Inference-I	4					
IV		Practicals based on DSC A4	2					
	DSC A5	Matrix Algebra and Regression Analysis	4					
-		Practicals based on DSC A5	2					

V	DSC A6	Design and Analysis of experiments	4
		Practicals based on DSC A6	2
VI	DSC A7	Statistical Inference-II	4
		Practicals based on DSC A7	2
	DSC A8	Sample Surveys and Statistics for National Development	4
		Practicals based on DSC A8	2

Open Electives for 1st to 4th Semesters

Sem	Code	For Science students	Code	For Non Science students
Ι	STOE 101	Applied Statistics	STOE 102	Statistical Methods
II	STOE 151	Business Statistics	STOE 152	Biostatistics
III	STOE 201	Population Studies	STOE 202	Basics of Operations Research
IV	STOE 251	Population Studies	STOE 252	Survival Models
IV	STOE 253	Quantitative Analysis Techniques		

COURSE PATTERN AND SCHEME

Core/	Paper	Title of the Paper	Instru	Duration	Max	k. Ma	arks	
Electi v e	Code		c tion Hours	of the Examinati on (Hrs)	Exa m	I A	Tota 1	Credits
]	[Sem					
DCC	STCT 101	Descriptive Statistics	4	2	40	60	100	4
DCC	STCP 101	Descriptive Statistics	4	3	25	25	50	2
DOE	STOE 101	Applied Statistics	3	2	40	60	100	3
DOE	STOE 102	Statistical Methods	3	2	40	60	100	3
	1	-		Total numbe	er of Cr	edits	in I Se	emester: 09
		Ι	I Sem					
DCC	STCT 151	Probability and Distributions-I	4	2	40	60	100	4
DCC	STCP 151	Probability and Distributions-I	4	3	25	25	50	2
DOE	STOE 151	Business Statistics	3	2	40	60	100	3
DOE	STOE 152	Biostatistics	3	2	40	60	100	3
	Total number of Credits in I Semester: 09							

		I	I Sem					
DCC	STCT 201	Calculus and Probability Distributions	4	2	40	60	100	4
DCC	STCP 201	Calculus and Probability Distributions	4	3	25	25	50	2
DOE	STOE 201	Population Studies	3	2	40	60	100	3
DOE	STOE 202	Basics of Operations Research	3	2	40	60	100	3
	1		Т	otal numbe	er of Cr	edits	in I Se	emester: 09
		Γ	V Sem					
DCC	STCT 251	Statistical Inference – I	4	2	40	60	100	4
DCC	STCP 251	Statistical Inference – I	4	3	25	25	50	2
DOE	STOE 251	Population Studies	3	2	40	60	100	3
DOE	STOE 252	Survival Models	3	2	40	60	100	3
DOE	STOE 253	Quantitative Analysis Techniques	3	2	40	60	100	3
			Т	otal numbe	er of Cr	edits	in I Se	emester: 09

Core/	Paper	1		Duration	Ma	x. Ma	rks	
Electi ve	Code		c tion Hours	of the Examinat i on (Hrs)	Exam	ΙA	Tota 1	Credits
		V	' Sem					
DCC	STCT 301	Matrix Algebra and Regression Analysis	4	2	40	60	100	4
DCC	STCP 301	Matrix Algebra and Regression Analysis -Practical	4	3	25	25	50	2
DCC	STCT 302	Design and Analysis of experiments	4	2	40	60	100	4
DCC	STCP 302	Design and Analysis of experiments - Practical	4	3	40	60	100	2
			,	Total numbe	r of Cre	dits ir	n I Sem	ester: 12
		V	I Sem					
DCC	STCT 351	Statistical Inference- II	4	2	40	60	100	4
DCC	STCP 351	Statistical Inference- II- Practical	4	3	25	25	50	2
DCC	STCT 352	Sample Surveys and Statistics for National Development	4	2	40	60	100	4
DCC	STCP 352	Sample Surveys and Statistics for National Development - Practical	4	3	40	60	100	2
	Total number of Credits in I Semester: 12							

Course Pre-requisite(s): II PUC with Mathematics

Course Outcomes (COs)

At the end of the course the student should be able to:

- 1. Acquire knowledge of introductory statistics, its scope and importance in various areas such as Medical, Engineering, Agricultural and Social Sciences etc.
- 2. Get knowledge of various types of data, their organization and evaluation of summary measures such as measures of central tendency and dispersion etc.
- 3. Perceive the knowledge of correlation, regression analysis, regression diagnostics, partial and multiple correlations.
- 4. Learn different of types of data reflecting independence and association between two or more attributes.
- 5. Develop ability to critically assess a standard report having graphics, probability statements.
- 6. Conceptualize the probabilities of events including frequentist and axiomatic approach. Simultaneously, they will learn the notion of conditional probability including the concept of Bayes' Theorem,
- 7. Get knowledge related to concept of discrete and continuous random variables and their probability distributions including expectation and moments,
- 8. Learn knowledge of important discrete and continuous distributions such as Binomial, Poisson, Normal distributions.

9. Acquire knowledge on R-programming in the descriptive statistics and probability models.

Course Articulation Matrix: Mapping of Course Outcomes (COs) With Program Outcomes (POs 1-12)

Course Outcomes (COs) / Program Outcomes (POs)				7	8	10	11	12
1. Knowledge of introductory statistics, its								
scope and importance in various areas such as								
Medical, Engineering, Agricultural and Social								
Sciences etc.								
2.Knowledge of various types of data, their						Х	X	
organization and evaluation of summary measures								
such								
as measures of central tendency and dispersion etc.								
3. Knowledge of correlation, regression					Х	Х	X	
analysis, regression diagnostics, partial and								
multiple correlations.								
4.Knowledge of types of data reflecting						X		Х
independence and association between two or								
more attributes								
5. Develop ability to critically assess a standard				X				
report having graphics, probability statements.								
6. Knowledge to conceptualize the probabilities						Х		
of events including frequentist and axiomatic								
approach.								
Simultaneously, they will learn the notion of								
conditional probability including the concept of								
Bayes' Theorem.								
7. Knowledge related to concept of discrete						X		
and continuous random variables and their								
probability distributions including								
expectation and moments.								
8. Knowledge of important discrete and						X		

continuous distributions such as Binomial,						
Poisson, Normal, distributions.						
9. Knowledge on R-programming in the					Х	
descriptive statistics and probability models.						

Detailed Syllabus for Semesters I B.Sc. Statistics Course Content of Semester– I STCT 101 -Descriptive Statistics

Course Title: Descriptive Statistics	Course Credits:4
Total Contact Hours:56	Duration of ESA: 2 hours
Formative Assessment Marks:40	Summative Assessment Marks:60

Number of Theory	Number of lecture	Number of practical	Number of practical
Credits	hours/semester	Credits	hours/semester
04	56	02	52

Content of Theory Paper 1	56 hrs				
Unit-1:Introduction to Statistics					
Statistics: Definition and scope. Data: quantitative and qualitative, cross sectional	and time-				
series, discrete and continuous variable. Scales of measurement :nominal, ordinal, int	erval				
and ratio. Data organization, Visualization: Tabular and graphical. Frequency dist	tributions,				
cumulative frequency distributions and their graphical representations. Stem and leaf displays					
Concepts of population and sample. Methods of sampling- SRS, Stratified, System	matic and				
Cluster sampling methods: definitions only.					
Unit-2:Univariate Data Analysis	18 hrs				
Concept of measures of central tendency : Arithmetic Mean, weighted mean, trimmed	mean,				
Median, Mode, Geometric and harmonic means, properties, merits and limitations, rela	ation				
between these measures. Measures of dispersion: Range, Quartile deviation, Mean deviation,					
Standard deviation and their relative measures. Gini's Coefficient, Lorenz Curve. Moments,					
Skewness and Kurtosis. Partition Values and measures based on them. Box Plot. Outli	ers.				

Unit –3:Bivariate Data Analysis		
Bivariate Data-, Correlation: Meaning, Types. Methods- Scatter plot, Karl Pearson's		
correlation coefficient, Rank correlation: Spearman's and Kendall's measures. Functional		
relation between the variables, concept of errors, principle of least squares, Simple linear		
regression and its properties. Fitting of linear regression line and coefficient of		
determination their interpretation. Fitting of polynomial and exponential curves.		
Unit -4:Multivariate Data Analysis13 hrs		
Analysis of Categorical Data: Contingency table, independence and association of attributes,		
measures of association-odds ratio, Pearson's and Yule's measure, Multivariate Frequencies,		
Multivariate Data Visualization, mean vector and dispersion matrix, Multiple linear		

regression, multiple and partial correlation coefficients. Residual variance.

Self -Study Components :

- Types of data Primary data and secondary data
- Preparation of Questionnaire for Sample Surveys using google forms.
- Basic Data Visualization Tools.

References

- 1. Agresti, A. (2010). Analysis of Ordinal Categorical Data, 2nd Edition, Wiley.
- 2. Anderson T.W.and Jeremy D.Finn(1996). The New Statistical Analysis of Data, Springer
- 3. Freedman, D., Pisani, R. and Purves, R. (2014). Statistics, 4th Edition, W.W. Norton & Company.
- 4. Gupta, S.C. (2018). Fundamental of Statistics, Himalaya Publishing House, 7th Edition.
- Gupta S.C. and V.K. Kapoor (2020). Fundamental of Mathematical Statistics, Sultan Chandand Co. 12th Edition.
- Hogg, R. V. McKean J. W. and Craig, A. T. (2012). Introduction to Mathematical Statistics, Pearson 7thEdition.
- Joao Mendes Moreira, Andre CPL Fde Carvalho, Tomas Horvath (2018). General Introduction to Data Analytics, Wiley.
- Johnson, R.A. and Bhattacharyya, G.K. (2006). Statistics: Principles and methods. 5thEdition, John Wiley & Sons, New York.
- 9. Medhi, J. (2005). Statistical Methods, New Age International.

- Ross, S.M. (2014). Introduction to Probability and Statistics for Engineers and Scientists, 5thEdition,Academic Press.
- 11. Tukey, J.W. (1977). Exploratory Data Analysis, Addison-Wesley Publishing Co.

Pedagogy

- The course is taught using traditional chalk and talk method using problem solving through examples and exercises.
- Students are encouraged to use resources available on open sources.

STCP101: Practical 1

4 Hrs Per week

List of Experiments

(Carrying-out all the practicals manually as well as using Excel spread sheet)

1. Presentation of data by frequency tables, diagrams and graphs, stem and leaf, partition values.

2.Arithmetic Mean (AM),geometric mean, harmonic mean, weighted AM, trimmed mean, corrected mean.

3.Mode, median, partition values.

4. Absolute and relative measures of dispersion, Boxplots.

5. Problems on moments, skewness and kurtosis.

6.Fitting of curves by least squares method.

7. Product moment correlation coefficient and rank correlation.

8. Fitting Simple Linear Regression

9.Partial and Multiple correlation.

10.Problems on Association of attributes.

OPEN ELECTIVE-: STOE101: APPLIED STATISTICS

Course Title: Applied Statistics	Course Credits:3
Total Contact Hours:42	Duration of ESA:2 hours
Formative Assessment Marks:40	Summative Assessment Marks:60

Course Objectives

- To enable the students to use statistical tools in finance, industries, population studies and health sciences.
- To acquire knowledge about sampling methods for surveys.

Course Outcomes (COs)

Upon successful completion of this course, the student will be able to:

- CO1.Understand the Price and Quantity Index numbers and their different measures, understand the applicability of cost of living Index number.
- CO2.Know the components and Need for Time series, understand the different methods of studying trend and Seasonal Index.
- CO3.Studytheconceptofvitalstatistics,sourcesofdata,differentmeasuresofFertilityandMortality, Understand the Growth rates-GRR and NRR and their interpretations.
- CO4.Know the concept of Population, Sample, Sampling unit, sampling design, sampling frame, sampling scheme, need for sampling , apply the different sampling methods for designing and selecting a sample from a population, explain sampling and non-sampling errors.
- CO5.Describe the philosophy of statistical quality control tools as well as their usefulness in industry and hence develop quality control tools in a given situation.

Pedagogy

- The course is taught using traditional chalk and talk method using problem solving through examples and exercises.
- Students are encouraged to use resources available on open sources.

Unit1: EconomicStatistics

Index numbers: Definition, Criteria for a good index number, different types of index numbers. Construction of index numbers of prices and quantities, consumer price index number. Uses and limitations of index numbers. Consumer price index number: construction of consumer price index numbers. Applications of consumer price index numbers.

Time Series Analysis: Components of time series, Decomposition of time series- Additive and multiplicative model with their merits and demerits, Illustrations of time series. Measurement of trend by method of free-hand curve, method of semi- averages and method of least squares(linear). Measurement of seasonal variations by method of ratio to trend.

Unit2: VitalStatistics

Sources of demographic data, errors in data. Measurement of mortality: crude death rate, specific death rates, and standardized death rates, infant mortality rate, maternal mortality rate, neonatal mortality rates, merits and demerits and comparisons of various mortality rates. Measurement of Fertility and Reproduction: Fecundity, fertility, measurement of fertility, crude birth rate, general fertility rate, age specific fertility rate and total fertility rates, merits and demerits of each measure of fertility, comparative study of these measures of fertility, Growth rates: Gross reproduction rate and Net reproduction rates.

Unit3: SamplingMethods

Population and Sample. Need for sampling, Complete Enumeration versus Sample Surveys, Merits and Demerits, Non-Probability and Probability Sampling, Need and illustrations. Use of random numbers, principal steps in sample survey. Requisites of a good questionnaire. Pilot surveys, Sampling and non – sampling errors, Description of simple random sampling with and without replacement procedures, Merits and demerits of Simple random sampling. Need for stratification, stratifying factors, Merits and demerits of stratified random sampling. Systematic random sampling procedure of obtaining sample, Merits and demerits of systematic random sampling.

12Hours

15 Hours

OPEN ELECTIVE-: STOE102: STATISTICAL METHODS AND APPLICATIONS

Course Title: Statistical Methods and Applications	Course Credits:3
Total Contact Hours: 42	Duration of ESA: 2 hours
Formative Assessment Marks:40	Summative Assessment
	Marks:60

Number of Theory	Number of lecture	Number of practical	Number of
Credits	hours/semester	Credits	practical hours/
			semester
03	42	-	-

Course Objectives

- This is an open elective course for other than statistics students.
- The students will learn the elements of descriptive statistics, probability, statistical methods such as tests of hypotheses, correlation and regression.

Course Outcomes

Students will be able to

CO-1.Acquire knowledge of statistical methods.

CO-2. Identify types of data and visualization, analysis and interpretation.

CO-3.Learn elementary probability and probability models. CO-4.Learnto apply test procedures for given dataset.

Pedagogy

The course is taught using traditional chalk and talk method using problem solving through examples and exercises.

Students are encouraged to use resources available on open sources.

Course Contents

Unit1: Introduction

10Hours

Definition and scope of Statistics. Data: quantitative and qualitative, attributes, variables, scales of measurement:

nominal, ordinal, interval and ratio. Presentation: tabular and graphic, including histogram and ogives. Concepts of population and sample. Sampling from finite population .Simple random sampling, Stratified and systematic random sampling procedures (definitions and methods only).

Concepts of sampling and non-sampling errors.

Unit2: Univariate and Bivariate Data Analysis

Measures of Central Tendency: mathematical and positional. Measures of Dispersion: range, quartile deviation, standard deviation, coefficient of variation, moments, skewness and kurtosis. Bivariate data, scatter diagram, Correlation, Karl-Pearson'scorrelation coefficient, Rank correlation. Simple linear regression, principle of least squares.

Unit3:Probability and Distributions

Probability :Random experiment,trial, sample space, events- mutually exclusive and exhaustive events.Classical, statistical and axiomatic definitions of probability, addition and multiplication theorems, Bayes theorem(only statements).Discrete and continuous random variables, probability mass and density functions, distribution functions, expectation of a random variable. Standard univariate distributions: Binomial, Poisson and Normal distributions(Elementary properties and applications only).

Unit4: Sampling Distributions and Testing of Hypothesis

Distribution of sample mean from a normal population, Chi-square, t and F distributions

(No derivations) and their applications. Statistical Hypothesis : null and alternative hypothesis, Simple and composite hypothesis. Type I and Type II errors, level of significance, criticalregion,

P- value and its interpretation. Test for single mean, Test for single proportion and equality of proportions equality of two means, single variance and equality of two variances for normal populations.

References

- 1. Daniel, W.W. (2007 Biostatistics-A Foundation for Analysis in the Health Sciences, Wiley
- 2. T.W.Anderson and Jeremy D.Finn(1996). The New Statistical Analysis of Data, Springer.
- 3. Mukhyopadyaya P(1999). Applied Statistics, New Central book Agency, Calcutta.
- 4. Ross, S.M. (2014) Introduction to Probability and Statistics For Engineers and Scientists.
- 5. Cochran, WG (1984): Sampling Techniques, Wiley Eastern, New Delhi.
- 6. S.C Gupta, V.K Kapoor: Fundamentals of Mathematical Statistics

12 Hours

10 Hours

10Hours

Course Content of Semester–II STCT151: Probability and Distributions-I

Course Title: Probability and Distributions-I			Course Credits:4
Total Contact Hours: 56		Duration of ESA:2hours	
Formati	Formative Assessment Marks:40		Summative Assessment Marks:60
Number of	Number of Lecture Number of		Number of Practical hours/semester
Theory Credits	hours/semester	practical	
		Credits	
04	56	02	52

Content of Theory Paper 2	56 hrs	
Unit–1 :Probability	14hrs	
Probability: Introduction, random experiments, sample space, events and alg	ebra of events.	
Definitions of Probability-		
classical, statistical, and axiomatic. Conditional Probability, laws of addition	and multiplication,	
independent events, theorem of total probability, Bayes' theorem and its app	lications.	
Unit-2:Random variables, Mathematical Expectation and Generating	14hrs	
Functions		
Random variables:discrete and continuous random variables ,p.m.f. ,p.d.f. and	d c.d.f.,	
Illustrations, univariate transformations with illustrations. Mathematical Exp	ectation and	
Generating Functions: Expectation of single random variables and its property	ties. Moments and	
cumulants, moment generating function, cumulant generating function, proba	ability generating	
functions(p.g.f.).Probability inequalities(Markov's and Chebychev's).		
Unit-3:Standard Discrete and Continuous distributions	18hrs	
Standard discrete probability distributions: Bernoulli, Binomial, Poisson, Geometric- Mean,		
Variance, Recurrence relation for the central moments, limiting properties, R	elationship between	
distributions, Fitting of Binomial an Poisson distributions. Standard continue	ous probability	
distributions: Uniform, Gamma, Normal-Mean, Variance,		
Properties, Fitting of Normal distributions. Applications of discrete and conti	inuous distributions.	

Unit –4:Data Analysis Using R	12hrs	
Introduction to R: R as a calculator, statistical software and a programming language, R		
preliminaries, getting help, data inputting methods(direct and importing from	n other spread sheet	
applications like Excel), data accessing, and indexing, packages, Graphics in	n R, built in	
functions, saving, storing and retrieving work. Descriptive statistics:, measu	res of central	
tendency (mean, median and mode), partition values, measures of dispersion	n (range, standard	
deviation, mean deviation and inter quartile range), summaries of a numeric	al data, skewness	
and kurtosis.		
Creating a vector using c (), reg() and Colon operator-Functions to summari	ze a vector sum	
mean, sd, median etc. Extracting a subset from the vector (by index, by pro-	perty) Introduction	
to plotting, plot(), lines(), Abline(), Barplot, Pie chart and Histogram-Box pl	lot, Scatter Plot and	
fitting simple linear regression.		
Probability Distributions: R as a set of statistical tables- cumulative distribution, probability		
density function, quantile function, and simulate from the distribution, plotting probability		

curves for standard distributions.

Self Study-

- Covariance, Correlation coefficient for Bivariate Probability distributions
- Plotting graphs of Various Probability Distribution using R
- Discrete uniform Distribution
- Negative Binomial Distribution
- Hypergeometric Distriution
- gg plot package in R

References

- 1. Dudewitz.E.J.and Mishra.S.N.(1998).Modern Mathematical Statistics. JohnWiley.
- Goon A.M., Gupta M.K., Das Gupta.B. (1991), Fundamentals of Statistics, Vol.I, World Press, Calcutta.
- Hogg R,V.,Mckean J.W, and Craig,A.T(2019).Introduction to mathematical Statistics,8th Edition,Pearson Education, New Delhi.
- Hogg,R.V.,Tanis,E.A .and RaoJ.M.(2009).Probability and Statistical Inference, Seventh Edition, Pearson Education, New Delhi.

- Mood, A.M., Graybill, F.A. and Boes, D.C. (2007). Introduction to the Theory of Statistics,3rd Edition. (Reprint), Tata McGraw-Hill Pub.Co. Ltd.
- 6. Ross, S.(2002), A First Course in Probability, Prentice Hall.
- Sudha G. Purohit, Sharad D. Gore, Shailaja R Deshmukh, (2009). Statistics Using R, Narosa Publishing House.
- Emmanuel Paradis(2005). R for Beginners (available at https://cran.rproject.org/doc/contrib/Paradisrdebuts en.pdf)

Pedagogy

- The course is taught using traditional chalk and talk method using problem solving through examples and exercises.
- Students are encouraged to use resources available on open sources.

STCP151: Practical 2 4 Hrs Per week List of Experiments

(Computing all the practicals manually and using Excel/R)

- 1. Two exercise on Descriptive statistics (Presentations, Summarizations, correlations, regression and Graphs using R)
- 2. Computing probability: using addition and multiplication theorems.
- 3. Conditional probability and Bayes' theorem.
- 4. Problems on pmf, expectation, variance, quantiles, skewness, kurtosis (Discrete Case).
- 5. Problems on pdf, expectation, variance, quantiles, skewness, kurtosis (Continuous case).
- 6. Problems on discrete probability distributions(Binomial and Poisson)
- 7. Problems on Normal probability distributions
- 8. Computation of Moments
- 9. Fitting of distributions Binomial, Poisson, Normal distributions.
- 10. Generation of random samples. (Binomial, Poisson, Normal distributions)

STOE152: Business Statistics

Course Title: Business Statistics	Course Credits:3
Total Contact Hours: 42	Duration of ESA: 2 hours
Formative Assessment Marks:40	Summative Assessment Marks:60

Number of	Number of lecture	Number of	Number of practical
Theory Credits	hours/semester	practical Credits	hours/semester
03	42		

Course Objectives

- Provide an introduction to basics of statistics within a financial context.
- To enable students to use statistical techniques for analysis and interpretation of business data.

Course Outcomes (COs)

Upon the completion of this course students should be able to:

CO1.Frame and formulate management decision problems.

CO2. Understand the basic concepts underlying quantitative analysis.

CO3.Use sound judgment in the applications of quantitative methods to management

decisions.

Pedagogy

The course is taught using traditional chalk and talk method using problem solving through examples and exercises.Students are encouraged to use resources available on open sources.

Course Contents

Unit1: Statistical Data and Descriptive Statistics

12 Hours

Nature and Classification of data: univariate, bivariate and multivariate data; time-series and cross-sectional data. Measures of Central Tendency: mathematical averages including arithmetic mean geometric mean and harmonic mean, properties and applications. Positional Averages Mode and Median (and other partition values including quartiles, deciles and percentiles).Measures of Variation: absolute and relative. Range, quartile deviation, mean deviation, standard deviation, and their coefficients, Properties of standard deviation/ variance Skewness: Meaning, Measurement using Karl Pearson and Bowley's measures ;Concept of Kurtosis.

Unit2: Simple Correlation and Regression Analysis

Correlation Analysis: Meaning of Correlation: simple, multiple and partial; Correlation and Causation, Scatter diagram, Pearson's co-efficient of correlation; calculation and properties (Proof not required). Correlation and Probable error; rank correlation.

Regression Analysis: Principle of least squares and simple linear regression (SLR). Fitting of Simple Linear Regression and interpretation. Properties of regression coefficients; Standard Error of Estimate and its use in interpreting the results.

Unit3: Index Numbers and Time Series

20 Hours

Definition, Problems involved in the construction of index numbers, methods of constructing index numbers of prices and quantities, simple aggregate and price relatives method, weighted aggregate and weighted average of relatives method, important types of weighted index numbers: Laspeyre's, Paasche's, Bowley's, Marshall- Edgeworth, Fisher's, method of obtaining price and quantity index numbers, tests consistency of index numbers, time reversal test and factor reversal test for index numbers. Uses and limitations of index numbers. Consumer price index number: Problems involved in the construction of cost of living index number, advantages and disadvantages, Aggregative expenditure method and Family budget method for the construction of consumer price index numbers. Applications of Cost of Living Index numbers. Introduction, definition and components of Time series; illustrations, Additive, Multiplicative and mixed models, analysis of time series, methods of studying time series: Secular trend, method of moving averages, least squares method–linear, quadratic, exponential trend fittings to the data. Seasonal variation- definition, illustrations, distinction from seasonal variation, Irregular variation-definition, illustrations.

References

- Levin, Richard, David S. Rubin, Sanjay Rastogi, and H M Siddiqui. Statistics for Management.7th ed., Pearson Education.
- David M. Levine, Mark L. Berenson, Timothy C. Krehbiel, P.K. Viswanathan, Business Statistics : A First Course, Pearson Education.
- 3. Siegel Andrew F. Practical Business Statistics. Mc Graw Hill Education.
- 4. Gupta, S.P., and Archana Agarwal. Business Statistics, Sultan Chand and Sons, New Delhi.
- 5. Vohra N.D., Business Statistics, McGraw Hill Education.
- Murray R Spiegel, LarryJ. Stephens, Narinder Kumar. Statistics (Schaum'sOutlineSeries), Mc-Graw Hill Education.
- 7. Gupta, S.C. Fundamentals of Statistics. Himalaya Publishing House.

10 Hours

STOE-152.Biostatistics

Course Title: Biostatistics	Course Credits:3
Total Contact Hours:42	Duration of ESA:2 hours
FormativeAssessment Marks:40	Summative Assessment Marks:60

Course Objectives

- 1. To understand the data types, types of variables and scales of measurement.
- 2. To understand different descriptive statistics in data analysis. Present data summary in tabular form and graphs.
- 3. To understand importance of random sampling and sampling technique.
- 4. To understand the concept of uncertainty in biological sciences and basics of probability and probability distributions.
- 5. To understand the concept of testing of hypothesis and errors in decision making
- 6. To know about bivariate and multivariate data, Measures of relationship: correlation and regression.

Course Learning Outcomes

After studying the course, the student will be able to apply statistical tools and techniques in data analysis of biological sciences.

Pedagogy

- The course is taught using traditional chalk and talk method using problem solving through examples and exercises.
- Students are encouraged to use resources available on open sources.

Course Contents

Unit1: Introduction to Bio-Statistics & Descriptive Statistics 15hours

Statistics and Health Science, Role of Biostatistics in Life Sciences. Definition and scope of Statistics. Scales of Measurement: nominal, ordinal, interval and ratio. Collection, classification and tabulation of data,

Measures of Central Tendency: Arithmetic mean, Median and Mode-definition, properties, merits and limitations.

Measures of Dispersion: Range, Standard deviation and Coefficient of Variation. Correlation and

Regression Analysis: Bivariate Data,Scatter Diagram, definition of correlation, types of correlation, Karl-Pearson's coefficient of correlation and its properties, Spearman's Rank Correlation coefficient. Regression-Simple linear regression, fitting of regression equations by method of Least Squares, regression coefficients and their properties and interpretation.

Unit2: Probability and Probability Distributions 12Hours

Probability: Random experiment, sample space, events-mutually exclusive and exhaustive events. Classical, statistical and axiomatic definitions of probability, addition and multiplication theorems, Bayes' theorem(only statements) and its application. Sensitivity, Specificity, positive predictive value, negative predictive value, odds ratio.

Discrete and continuous random variables, probability mass and density functions, distribution functions, expectation of a random variable. Standard univariate distributions: Bernoulli, Binomial, Poisson and Normal distributions(Elementary properties and applications only).

Unit3: Sampling Distributions and Statistical Inference15hours

Concepts of random sample and statistic, distribution of sample mean from a normal population, Chisquare, t and F distributions (No derivations) and their applications. Estimation of population mean, population standard deviation and population proportion from the sample counterparts. Statistical hypothesis: null and alternative hypothesis, simple and composite hypothesis. Type I and Type II errors, size, level of significance, power test, critical region, P-value and its interpretation. Test for single mean, equality of two means, s ingle variance, equality of two variances for normal Populations, Test for proportions. ANOVA and Nonparametric Tests.

Self study component : construction of frequency table for grouped and ungrouped data, graphical re presentation of data by histogram, polygon, ogive curves and Pie diagram.

References

- 1. Dutta, N.K.(2004), Fundamentals of Biostatistics, Kanishka Publishers.
- 2. Gurumani N.(2005), An Introduction to Biostatistics, MJP Publishers.
- 3. Daniel, W.W. (2007), Biostatistics-AFoundation for Analysis in the Health Sciences, Wiley
- Rao,K.V.(2007),Biostatistics A Manual of Statistical Methods for use in Health Nutrition and Anthropology
- 5. Pagano, M .and Gauvreau, K.(2007), Principles of Biostatistics.
- 6. Rosner Bernard (2010), FundamentalsofBiostatistics, 6th Edition, Duxbury.

II B.Sc. Statistics Course Content of Semester-III

Type of Course	Formative Assessment / IA	Summative Assessment
Theory	40	60
Practical	25	25(20+5(Practical record))

STCT 201 -Calculus and Probability Distributions

Course Title: Calculus and Probability Distributions		
Total Contact Hours: 56Course Credits:04		
Formative Assessment Marks: 40Duration of ESA/Exam: 2 hour		
Summative Assessment Marks: 60		

Number of	Number of lecture	Number of practical	Number of practical
Theory	hours/semester	Credits	hours/semester
Credits			
4	56	2	52

Course Objectives

To enable the students to

- 1. Know the concept of continuity, differentiability, integration of one and more variables.
- 2. Define and describe properties of Joint, Marginal and conditional distributions of variables and some key concepts of probability theory.
- 3. Understand different discrete, continuous and sampling distributions, properties and their applications.
- 4. Generate random variables from various distributions using R-code.

Course Outcomes

After completion of this course the students will be able to

- 1. Judge continuity of a function, find integrations and solve problems of differentiability.
- 2. Solve problems of various analytical environments using different distributions and their properties.
- 3. Find sampling distributions of functions of random variables and explore their applications.

STCT 201- Theory Paper 3: Calculus and Probability Distributions

Content of Theory Paper 3		
UNIT 1: Calculus of one and more variables		
Review of calculus of one variable: continuity, differentiability Taylor series		
expansion. Functions of several variables: partial derivatives Applications of		
partial differentiation, Jacobian., integration by parts,. Multiple integrals and		
evaluation of multiple integrals by repeated integration, Sequences and Series of		
real numbers. convergence of sequences and series, tests for convergence of		
series.		
(Only results and applications)		
UNIT 2: Distribution of Random Variables (Two-dimensional)	13 Hrs	
Two dimensional random variables: Joint distribution, Marginal distribution		
and Conditional distributions of random variables, Independence of random		
variables, theorems on expectation, conditional expectation, covariance,		
correlation and moments. Distribution of functions of random variables using		
m.g.f. and distribution function.		
Transformation of variable technique (two variables).		
Chebyshev's inequality- proof and its use in approximating probabilities;		
Convergence in law and convergence in probability. Statements of Weak Law of		
Large Numbers; and Central Limit theorems - De-Moivre. (Some simple		
examples)		

UNIT 3: Probability Distributions-II	18 Hrs
Discrete distributions: Rectangular, Negative Binomial, Hypergeometric,	
Multinomial- definition through probability mass function, mean, variance,	
moments, p.g.f., m.g.f., other properties and applications.	
Continuous distributions: Exponential (single and double parameters), Beta (type	
1 and type 2), Cauchy, Weibull- definition through probability density function,	
mean, variance, moments, m.g.f., other properties and applications.	
Bivariate normal distribution- definition through probability density function,	
marginal and conditional distribution.	
UNIT 4: Sampling Distributions and Simulation	15 Hrs
Definitions of random sample, parameter and statistic, sampling distribution of	
sample mean, standard error of sample mean, sampling distribution of sample	
variance, standard error of sample variance.	
Exact sampling distributions: Chi square distribution- mean, variance, mode, additive property. Student's t-distribution- mean, variance and limiting form of t distribution. Snedecor's F-distribution: mean, variance and mode. Distribution of $1/F$. Relationship between t, F and χ^2 distributions.	
Assuming the independence of sample mean x and sample variance S^2 when sampling from $-$	
normal population derive the distribution of x .	
s ²	
n	
Introduction to simulation. Generation of random observations from Uniform,	
Exponential, Monte Carlo Simulation	

Text Books:

- 1. Gupta S.C. and V.K. Kapoor (2020), Fundamental of Mathematical Statistics, Sultan Chand and Co. 12th Edition.
- 2.Shanthi Narayana (2000), Integral Calculus, S. Chand & Co. Ltd.

References

- Andre I Khuri (2003). Advanced Calculus with Applications in Statistics, Second Edition, John Wiley & Sons.
- 2. Ghorpade, S. R. and Limaye, B. V. (2006). A Course in Calculus and Real Analysis, Springer
- Hogg, R. V. McKean J. W. and Craig, A. T. (2012), Introduction to Mathematical Statistics, Pearson 7th Edition.
- Hogg, R.V., Tanis, E.A. and Rao J.M. (2009), Probability and Statistical Inference, 10th Edition, Pearson Education, New Delhi.
- 5. Jay Kerns, G. (2010). Introduction to Probability and Statistics using R. 1st Edition, Springer.
- Rohatgi, V.K. and A.K. Md. Ehsanes Saleh. (2002). An Introduction to Probability Theory and Mathematical Statistics, New York, John Wiley.
- 7. Ross, S. M. (2014). Introduction to Probability Models. 11th Edition, Elsevier science.
- 8. Ross, S. M. (2012). Simulation. Academic Press.
- 9. Shanti Narayana (2000). Differential Calculus, S. Chand & Co. Ltd.
- 10. Verzani, J. (2002). Simple R Using R for Introductory Statistics.

Pedagogy

- 1. The course is taught using traditional chalk and talk method using problem solving through examples and exercises.
- 2. Students are encouraged to use resources available on open sources.

STCP 201- Contents of Practical 3

Note: The first practical assignment is on R-programming. Practical assignments 2 to 10 have to be first solved manually (using scientific calculators) and executed using R-programming.

- 1. Demonstration of R functions for calculus, distribution of random variables, probability distributions, sampling distribution simulation.
- 2. Numerical differentiation and integration-I
- 3. Numerical differentiation and integration-II
- 4. Bivariate Probability Distributions Marginal and Conditional distributions,
- 5. Bivariate Probability Distributions Conditional Mean, Conditional Variance, Correlation.
- 6. Applications of Chebyshev's inequality (For standard distributions such as Normal, Exponential, Gamma).
- 7. Applications of discrete probability distributions Negative Binomial, Hyper geometric and discrete uniform, multinomial distributions.
- Applications of continuous probability distributions Exponential, Gamma, Cauchy, Weibull distributions.
- 9. Fitting of discrete and continuous distributions.
- 10. Generating random sample from continuous distributions.

STOE 201- Population Studies (STOE 251)

Course Title: Population Studies	CourseCredits:3	
TotalContactHours:42	Duration of ESA:2 hours	
FormativeAssessmentMarks:40	SummativeAssessmentMarks:60	

Number of	Number of lecture	Number of	Number of practical
Theory Credits	hours/semester	practical	hours/semester
		Credits	
03	42		

Course Objectives

1. To enable the students to identify appropriate sources of data, perform basic demographic analysis using various techniques and ensure their comparability across populations.

2. To acquire knowledge about the construction of life table and its applications in demographic analysis.

Course Outcomes (CO)

Upon successful completion of this course the student will be able to

CO1. Study the concepts of Vital Statistics, sources of data, different measures of Fertility, Mortality and migration.

CO2. Understand the Growth rates- GRR and NRR and their interpretations.

Pedagogy

1. The course is taught using traditional chalk and talk method using problem solving through examples and exercises.

2. Students are encouraged to use resources available on open sources.

Contents

UNIT-1: Introduction and Sources of Population Data

History, definition, nature and scope of population Studies. Sources of population data – salient features of Census, Civil Registration System, National Sample Surveys, Demographic Surveys, relative merits and demerits of these sources. Coverage and content errors. Use of balancing equations,

UNIT-2 : Fertility, Mortality

Basic concepts and terms used in the study of fertility. Measures of fertility- Crude Birth Rate (CBR), General Fertility Rate (GFR), Age Specific Fertility Rate (ASFR), Total Fertility Rate (TFR), Birth order statistics, Child Women ratio. Measures of reproduction- Gross Reproduction Rate (GRR)and Net Reproduction rate(NRR). Measurement of population growth rate- simple growth rate and compound growth rate. Basic concepts and terms used in the study of mortality. Measures of mortality- Crude Death Rate (CDR), Age Specific Death Rate (ASDR), Direct and Indirect Standardized Death rates, Infant Mortality Rate (IMR), Under-five mortality Rate, Neo-natal mortality rate, Post-natal mortality rate; Maternal Mortality Rate (MMR).

UNIT-3: Life tables and Population change

Life tables: Components of a life table, force of mortality and expectation of life table, types of life tables. Uses of life tables.

Basic concepts and definition of population change, migration. Types of migration- internal and international, factors affecting migration. Rates and ratios of Migration-Indirect measures of netinternal migration, national growth rate method, residual method, push-pull factors Population estimates and projections.

References

- 1. Barclay, G, W(1968). Techniques of Population Analysis, John Wiley and Sons, Incs. New York
- 2. Keyfitz, H (1968). Introduction to the Mathematics of Population. Addison-Wesley Publishing Co.
- 3. Pathak, K.B and Ram, F (1991). Techniques of Demographic Analysis, Himalaya Publishing House.
- 4. Ramakumar. R (1986). Technical Demography, Wiley Eastern Ltd.
- 5. Srinivasan. K (1998). Basic Demographic Techniques and Applications, Sage Publication, New Delhi.

14 hours

14 hours

35

14 hours

6. Wunsch G.J. & M.G. Tarmota(1978). Introduction to Demographic Analysis, Plenum Press, N.Y.

Contents

Unit-1: Introduction to Operations Research(OR)

Origin and growth of OR, importance of OR in managerial decision making, scope and applications of OR, models and modeling in OR. Linear programming problems(LPP): Formulation of the problem, feasible & infeasible, basic feasible solution, optimal, unbounded and multiple optimal solutions of LPP, solution by graphical method. Slack, Surplus and Artificial variables. Duality in LPP, Importance of Duality Concepts, Formulation of Dual Problem, Economic Interpretation of Duality.

Unit-2: Allocation Problems

Transportation problems: Formulation, methods of finding initial solution (North West Corner Rule, Least Cost Method and Vogel's Approximation Method), unbalanced transportation problems, maximization transportation problem.

Assignment problems: Formulation, methods of solution, Hungarian method, multiple optimal solutions, unbalanced problems, maximization problems.

Unit-3: Decision theory

Game theory: Basic concepts. Two – Person Zero Sum Game. Pure and Mixed Strategies. Maximin – Minimax principle, Games with and without saddle points. Principle of dominance.
Concepts of decision making, decision making environments, Decision making under uncertainty
Decision making under risk, decision tree analysis. Case discussion.
Concepts of network analysis, project network models, Critical Path Method, PERT.

14 hours

14 hours

14 hours

References

- 1. Hillier, F S, et al. Introduction to Operations Research (9/e). Tata McGraw Hill, 2011.
- Ravindran, A and Don T Phillips. Operations Research: Principles and Practice. John Wiley & Sons, 1987.
- 3. Sharma, J K. Operations Research: Theory and Applications (5/e). New Delhi: Laxmi Publications, 2013.
- 4. Taha, Hamdy A. Operations Research: An Introduction (9/e). Prentice Hall, 2010.
- 5. Vohra, N D. Quantitative Techniques for Management. Tata McGraw Hill Education, 2015.
- Kanti Swarup, Gupta, P.K. and Man Mohan: Operations Research, Sultan Chand & Sons, New Delhi.
- 7. Kapoor, V.K: Operations Research, Sultan Chand & Sons, New Delhi.
- 8. Kapoor, V.K.: Operations Research Problems & Solutions, Sultan Chand & Sons, New Delhi.

II B.Sc. Statistics

Course Content of Semester-IV

STCT 251: Statistical Inference-I

Course Title: Statistical Inference-I	
Total Contact Hours: 56	Course Credits:04
Formative Assessment Marks: 40	Duration of ESA/Exam: 2 hours
Summative Assessment Marks: 60	

Number of	Number of	Number of	Number of
Theory Credits	lecture	practical Credits	practical
	hours/semester		hours/semester
4	56	2	52

Course Objectives

To enable the students to understand the concepts of

- 1. Families of distributions, order statistics and their distributions.
- 2. Estimation, criteria for estimators, methods of estimation, confidence interval.
- 3. Testing of Hypotheses and its theoretical aspects, large and small sample tests.

Course Outcomes

After completion of the course, the students will be able to

- 1. Carryout statistical analysis by identifying families of distributions and the use of order statistics.
- 2. To find estimators using different methods of estimation and compare estimators.
- 3. To carryout statistical inference using different tests of hypotheses under different scenarios.
- 4. Generate random variables and use these generated random variable for illustration of concepts studied in this course.

STCT 251-Theory Paper 4 –

Statistical Inference-I

Content of Theory Paper 4	56 Hrs
UNIT 1: Point Estimation-I	16 Hrs
Families of distributions- location and scale families. Single parameter exponential	
family. Concept of order statistics, Distribution of maximum and minimum order statistics	
(with proof) and r th order statistic (without proof).	
Concepts of estimator and estimate. Criteria for estimators: Unbiasedness, Consistency.	
Invariance property of consistent estimators. Efficiency and relative efficiency. Mean	
squared error as a criterion for comparing estimators. Sufficient statistics. Statement of	
Neyman-Factorization theorem.	
UNIT 2: Point Estimation-II	12 Hrs
Fisher information function. Statement of Cramer-Rao inequality and its applications.	
Minimum Variance Unbiased Estimator and Minimum Variance Bound Estimator.	
Maximum likelihood and method of moment estimation; Properties of MLE and moment	
estimators and examples. Method of Scoring	
UNIT 3: Testing of Hypotheses	18 Hrs
Statistical hypotheses - null and alternative, Simple and composite hypotheses. Type-I and	
Type-II errors, test functions. Randomized and non-randomized tests. Size, level of	
significance, Power function, power of tests. Critical region, p- value and its	
interpretation. Most Powerful (MP) and UMP test(Statement only). Statement of Neyman-	
Pearson Lemma and its applications. Likelihood ratio tests. Large and small samples tests	
of significance. Tests for single mean, equality of two means, single variance and equality	
of two variances for normal populations. Tests for proportions.	
UNIT 4: Interval Estimation	10 Hrs
Confidence interval, confidence coefficient, shortest confidence interval. Methods of	
constructing confidence intervals using pivotal quantities. Construction of confidence	
intervals for mean, difference of two means, variance and ratio of variances, proportions,	
difference of two proportions and correlation coefficient.	

- Gupta S.C. and V.K. Kapoor (2020), Fundamental of Mathematical Statistics, SultanChand and Co. 12th Edition.
- 2. Rohatgi, V.K. and A.K. Md. Ehsanes Saleh. (2002). An Introduction to Probability Theoryand Mathematical Statistics, New York, John Wiley.

References

- Chihara, L. and Hesterberg, T. (2011) Mathematical Statistics with Resampling and R. Wiley.
- Hogg, R. V. McKean J. W. and Craig, A. T. (2012), Introduction to Mathematical Statistics, Pearson 7th Edition.
- Hogg, R.V., Tanis, E.A. and Rao J.M. (2009), Probability and Statistical Inference, 10th Edition, Pearson Education, New Delhi.
- Johnson, R.A. and Bhattacharyya, G.K. (2006), Statistics: Principles and methods. 5th Edition, John Wiley & Sons, New York.
- Kale, B.K. (1999). A First Course on Parametric Inference, New Delhi, Narosa Publishing House.
- 6. Kendall, M.G., et. al., (1996). An Introduction to the Theory of Statistics, Universal Book Stall.
- Ross, S.M. (2014), Introduction to Probability and Statistics for Engineers and Scientists, 5th Edition, Academic Press.

STCP 251- Contents of Practical 4

- **Note:** The first practical assignment is on R-programming and R packages. Practical assignments 2 to 10 have to be first solved manually (using scientific calculators) and executed using R-programming.
- 1. Demonstration of R-functions for estimation and testing of hypotheses.
- 2. Computing maximum likelihood estimates.
- 3. Computing moment estimates.
- 4. Interval estimation: Construction of confidence interval (large samples)
- 5. Interval estimation: Construction of confidence interval (small samples)
- 6. Evaluation of Probabilities of Type I and Type II errors and power of tests.
- 7. Small sample tests: Tests for mean, equality of means under normality when variance is (i) known (ii) unknown, P-values.
- 8. Large sample tests: single proportion and equality of two proportions, variance and equality of two variances under normality. P-values for the above tests.
- 9. Large sample tests: Tests for mean, equality of means when variance is (i) known (ii) unknown, under normality.
- 10. Test for variance and equality of two variances under normality. P- values for the above tests.

STOE201- STOE 252-Survival Models

Course Objectives

- 1. Enable the students to construct and interpret life tables.
- 2. To understand the concepts of Survival analysis.
- 3. To study the design of clinical trials and their analysis.

Course Outcomes:

By the end of this course, the student should be able to:

CO1.Explain Life Tables, types of life tables, its functions, construction. CO2. Describe

multiple decrement life tables and their construction.

CO3. Know survival models, concepts of survival analysis, notion of ageing.

CO4. Explain key concepts in the design of clinical trials, phases, types, clinical trial protocol, analysis.

Content

Unit-1: Life Tables

Basic definition and notations, Types of life tables, inter - relationships between life table functions, Properties of life table functions. Construction of life tables using Reed - merrel and Greville's Method. Competing causes of failure/death, Multiple decrement life tables and their construction (with examples).

Unit-2: Survival Concepts

Life distributions, survival functions, failure rate, Integrated hazard function, residual life time, mean residual life time. Notion of aging: IFR, IFRA, DMRL, NBU, NBUE classes of life distributions and their dual classes. Common Life Distributions: binomial, Poisson, exponential, Weibull, gamma, Pareto and log-normal distributions.

14 hours

14 hours

Unit-	Course Title: Survival Models	CourseCredits:3	3: Clinical
	TotalContactHours:42	Duration of ESA:2 hours	Trials
	FormativeAssessmentMarks:40	SummativeAssessmentMarks.69s	
Basics			of

Clinical Trials: Who can be in clinical trials? need clinical trials, Brief History of Clinical Trials, Common Terms in clinical Trials: Clinical Research, Healthy Volunteer, Inclusion/Exclusion Criteria, Informed Consent, Patient Volunteer, Phases of Clinical Trials, Placebo, Protocol, Principal Investigator, Randomization, Single- or Double-Blind, Studies, Types of Clinical Trials. - Diagnostic trials, Natural history studies, Prevention trials, Quality of life trials, Screening trials, Treatment trials, therapeutic trials and prophylactic trials. Observational studies - Cross

Number of	Number of lecture	Number of	Number of practical
Theory Credits	hours/semester	practical	hours/semester
		Credits	
03	42		

sectional studies, prospective studies, retrospective studies, randomized control studies. Clinical Trial Protocol and its components. Type of analyses: ITT, mITT and PP. Odds ratio, Relative risk, Sensitivity, specificity, false negative and false positive rates. Receiver operating characteristic(ROC) curve.

References

- 1. Deshpande, J V and Purohit, Sudha (2005). Life Time Data: Statistical Models and Methods. World Scientific.
- 2. Friedman, Furberg, and DeMets. (2010). Fundamentals of Clinical Trials (4th Edition). Springer, Free text available online at http://dx.doi.org/10.1007/978-1-4419-1586-3
- 3. Lawrence MF, Curt DF, David LD (2010), Fundamentals of clinical trials.
- 4. R. Ramkumar (1986), Technical Demography, Wiley Eastern, New Delhi. Shryock, Henry S, Jacob S, Siegel and Associates (1964). Methods and materials of demography (condensed edition), Academic press, London.

Course Title: Survival M	lodels	CourseCredits:3				
TotalContactHours:42		Duration of	ESA:2 hours			
FormativeAssessmentMa	arks:40	Summative	AssessmentMarks:60			
Number of	Number of lecture	Number of	Number of practical			
Theory Credits	hours/semester	practical	hours/semester			
		Credits				
03	42					

STOE 253- Quantitative Analysis Techniques

Course Objectives

To enable the students to acquire the knowledge about

- Data analysis using descriptive statistics.
- Study of relationship between the two variables
- To understand the concept of Probability and its applications

Course Outcomes

Students will be able to

- CO1. Compute various measures of descriptive statistics
- CO2. Carryout correlation and regression analysis.
- CO3. Students are able to understand the concept of probability and its applications

Pedagogy

The course is taught using traditional chalk and talk method using problem solving

through examples and exercises. Students are encouraged to use resources available on open sources.

Course Content

UNIT-1: Descriptive Statistics

14 hours

14 hours

Measures of central value: mean, median, mode, geometric mean and harmonic Mean, combined arithmetic mean(definition, computation, and relative merits And demerits) Measures of dispersion: range, mean deviation, standard deviation, coefficient of Variation, variance- combined standard deviation(definition, computation and relative merits and demerits)

UNIT-2: Correlation and regression analysis

Correlation- Definition, Types - Simple, multiple, partial. Causation - Spurious, positive, negative, perfect and no correlation, explanation with examples. Importance of correlation analysis. Measurement of correlation- scatter diagram, Karl Pearson's coefficient of correlation, Properties of coefficient of correlation, interpretation. Spearman's coefficient of rank correlation – with and without ties, interpretation. Coefficient of determination and its interpretation.

Regression- Definition, regression lines/equations of X on Y and Y on X. Properties of regression coefficients and regression lines/equations. Principle of least squares and fitting of linear, quadratic and exponential curves. Uses of regression analysis. Comparison between correlation and regression.

UNIT-3: Introduction to classical probability

Definition and examples of sample space, event, mutually exclusive, exhaustive, equally likely events, complimentary event, null event, certain event. Classical definition of probability, definition of conditional probability, addition and multiplication theorem (statement only). Independent and dependent events – simple problems based on classical definition, conditional probability and addition and multiplication theorem.

References

 Goon, A.M., Gupta, M.K. and Dasgupta, B. (2002). Fundamentals of Statistics, Vol. I, 8th Ed., The World Press, Kolkata.

- Ross, S.M. (2014). Introduction to Probability and Statistics for Engineers and Scientists, 5th Edition, Academic Press.
- 3. B.L.Agarwal(2009), *Basic Statistics*, New age international Pvt Ltd.
- 4. N.G. Das(2009), Statistical Methods, Tata McGraw Hill education Pvt Ltd.
- 5. K. Nagabhushan & others(2008), A classic text book of *statistics*, S.D.M Excellent publications.

III B.Sc. Statistics Course Content of Semester– V STCT 301: Theory Paper 5: Matrix algebra and regression analysis (Theory)

Program Name	B.Sc. in	Semester	V
	STATISTICS		
Course Title	Matrix alge	bra and regression analysis	(Theory)
Course Code:	STCT 301	No. of Credits	04
Contact hours	60 Hours	Duration of SEA/Exam	2 hours
Formative Assessment	40	Summative Assessment	60
Marks		Marks	

Course Pre-requisite(s):

Course Outcomes (COs): After the successful completion of the course, the student will be able to:

- CO1. Demonstrate and understanding of basic concepts of matrix algebra, including determinants, inverse and properties of various types of matrices.
- CO2. Apply matrix algebra and linear algebra techniques to solve systems of linear equations, determine the rank of matrix, understanding quadratic forms and their applications in statistics, characteristic roots and vectors.
- CO3. Understand the various aspects in simple and multiple linear regression models and their interpretation.

CO4. Apply regression analysis techniques to real world data sets.

Unit 1: Algebra of matrices and determinants 15 Hrs	Content of Theory Pape	r 60 Hrs
Unit 1. Algebra of matrices and determinants	Unit 1: Algebra of matrices and determinants	15 Hrs

A review of matrix algebra, theorems related to triangular, symmetric and skew	
symmetric matrices, idempotent matrices, orthogonal matrices, singular and non-	
singular matrices and their properties. Trace of a matrix, unitary matrices. Adjoint	
and inverse of a matrix and related properties. Determinants ants of Matrices:	
Definition, properties and applications of determinants for 3rd and higher orders,	
evaluation of determinants of order 3 and more using transformations.	
Unit 2: Linear Algebra	15 Hrs
Linear algebra: Use of determinants in solution to the system of linear equations, row	
reduction and echelon forms, the matrix equations AX=b, consistency of the linear	
system, solution sets of linear equations, inverse of a matrix. Vector space, subspace,	
linear dependence and independence of vectors. Basis and dimension, rank of a	
matrix row-rank,	
Column-rank, standard theorems on ranks, rank of the sum and the product of two	
matrices. Characteristic roots and Characteristic vector, Properties of characteristic	
roots, Cayley Hamilton Theorem, Quadratic forms, nature of quadratic form and	
properties.	
Unit 3: Simple linear regression	15 Hrs
Simple linear regressions Model, assumptions, Least Squares estimation, estimation	
of intercepts & slope along with Standard error. Residual vector and proprieties,	
estimation of error variance. Test on regression coefficients, prediction, standard	
error of prediction, coefficient of determination. Diagnostic checks:- residual analysis	
for testing deviation from normality, homoscedasticity, outliers, randomness and	
lack-of-fit testing	
lack-of-fit testing Unit 4:Multiple Linear Regression	15 Hrs
	15 Hrs
Unit 4:Multiple Linear Regression	15 Hrs
Unit 4:Multiple Linear Regression Multiple Linear Regression Model, Assumptions, Gauss- Markov Theorem (Without	15 Hrs
Unit 4:Multiple Linear Regression Multiple Linear Regression Model, Assumptions, Gauss- Markov Theorem (Without proof), Least square Estimation, variance-covariance of least squares estimators,	15 Hrs

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

		 P	rogr	am	01	itco	me	s (P	Os)	
Course Outcomes (COs) / Program		4	5	6	7	8	9	10	11	12
Outcomes (POs)										
Demonstrate and understanding of basic								X		
concepts of matrix algebra, including										
determinants, inverse and properties of										
various types of matrices.										
Apply matrix algebra and linear algebra								x		
techniques to solve systems of linear										
equations, determine the rank of matrix,										
understanding quadratic forms and their										
applications in statistics, characteristic roots										
and vectors.										
Develop and understanding of simple and		x	Х					X		
multiple regression models, including the										
assumptions underlying these models,										
techniques for inference and hypothesis										
testing and method diagnostics checks and										
corrections.										
Apply regression analysis techniques to real		x	X							
word data sets										

Pedagogy:

- 1. The course is taught using traditional chalk and talk method using problem solving through examples and exercises.
- 2. Students are encouraged to use resources available on open sources.

Self study component :

- 1. Method of weighted least squares in simple linear regression
- 2. Inverse regression

Formative Assessment for The	ory
Assessment Occasion/ type	Marks

Internal Test 1	15
Internal Test 2	15
Assignment/Seminar (7 marks)+Attendance(3marks)	10
Total	40 Marks

STCP 301- Contents of Practical 5

	Matrix algebra and Regression	Practical Credits	2
Course Title	analysis (Practical)		
Course Code	STCP 301	Contact Hours	60 Hours
Formative	25 Marks	Summative	25 Marks
Assessment		Assessment	
	Practical Content	11	
1. Calculation of det	erminant of higher order		
2. Calculation of ran	ık of a matrix		
3. Calculation of equ	uvalent canonical form by using elementary ro	w and column opera	ations
4. Calculation of in	verse of matrices of higher order		
5. Calculation of Ei	gen values and Eigen vectors		
6. Solution of simul	taneous equations		
7. Simple Linear Re	egression		
8. Multiple Regress	ion-I		
9. Multiple Regress	sion -II.		
10. Residual Analys	is		

Pedagogy: Practical assignments 1 to 10 have to be first solved manually (using scientific calculators) and executed using R-programming.

Formative Assessment for Practical			
Assessment Occasion/ type	Marks		
Internal Test 1	10		
Internal Test 2	10		
Attendance	5		
Total	25 Marks		

	References
1	Ramachandra Rao, A. and Bhimasankaram, P. (2000). Linear Algebra. Hindustan Book
	Agency
2	Searle, S. R. (1982). Matrix Algebra Useful for Statistics, John Wiley, New York.
3	Kumaresan, S. (2000). Linear Algebra: A Geometric Approach, Prentice Hall
4	Shanthi narayan (1991): A text of Matrices, S. Chand & Company, New Delhi.
5	Devi prasad (2012): Elementary Linear algebra,2 nd Ed. Norosa Publishing House.
6	Gilbert strang (2016) Linear Algebra and its Applications, 5 th edition Cengage Learning.
7	Montgomery, D. C., Peck, E. A. and Vining, G. G. (2003). Introduction to Linear
	Regression Analysis, Wiley.
8	Weisberg, S. (2005). Applied Liner Regression, Wiley.
9	Yan, X. and Su, X. G. (2009). Linear Regression Analysis: Theory & Computing, World
	Scientific.
10	Domodar .N Guajarati (2017):Basic Econometrics,5 th Edition
11	Madanani GMK(2008):Introduction to econometrics Principles and applications, 8 th Ed.
	Oxford and IBH Publishing company Pvt Ltd.

STCT 302: Theory

Program Name	B.Sc. in STATIS	TICS	Semester	V	
Course Title	Design and Analysis of Experiments (Theory)				
Course Code:	STCT 302		No. of Credits	4	
Contact hours	60 Hours		Duration of SEA/Exam	2 hours	
Formative Assessment Marks	40	Su	mmative Assessment Marks	60	

Paper 6: Design and Analysis of Experiments (Theory)

Course Pre-requisite(s):

Course Outcomes (COs):

After the successful completion of the course, the student will be able to:

CO1. Identity fixed and random effect models and one-way and two-way classified data.

CO2.Choose appropriate designs (CRD, RBD, LSD) and missing plot

techniques for a real life problem.

CO3. Identity appropriate factorial experiments for the real life problem.

CO4. Develop complete and partial confounding for factorial experiments.

Contents of Theory Paper 6	60 Hrs
UNIT 1: Concepts of Experiment: Design and Analysis.	20 Hrs
Experiments and their designs, principles of designs of experiments,	
experimental error and interpretation of data contrasts and analysis of variance,	
Fixed and random effects models, Analysis of One-way and two-way classified	
data without interaction. Multiple comparison tests: Tukey's method, Critical	
difference.	
UNIT 2: Experimental Designs.	20 Hrs
Completely randomized, randomized block and Latin square designs (CRD,	
RBD, LSD) - layout formation and the analysis using fixed effect models.	
Comparison of efficiencies of CRD, RBD and LSD. Estimation of one and two	
missing observations in RBD and LSD and analysis.	
UNIT 3: FACTORIAL EXPERIMENT	10 Hrs
Basic concepts – main and interaction effects, and orthogonal contrasts in 2^2	
and 2 ³ factorial	
experiments. Yates' method of computing factorial effects total. Analysis of	

2 ² and 2 ³ factorial experiments in RBD.	
UNIT 4: CONFOUNDING	10 Hrs
Need for confounding. Types of confounding - Complete and partial,	
Confounding in a 2 ³ -	
factorial experiment in RBD and its analysis.	

Course Articulation Matrix: Mapping of Course Outcomes (COs) with

Program Outcomes (POs 1-12)

	Program Outcomes (POs)											
Course Outcomes (COs) / Program Outcomes			3	4	5	6	7	8	9	10	11	12
(POs)												
CO1.Learn about fixed, random, and mixed effect				x		x			x	x		
models and one-way and two-way classified data.												
CO2.Understand different designs (CRD, RBD,						х			х	X		
LSD) and missing plot techniques.												
CO3. Understand the different factorial						x			x	X		
experiments.												
CO4. Develop complete and partial confounding				x		х			x	X		
for factorial experiments.												

Pedagogy:

- 1. The course is taught using traditional chalk and talk method using problem solving through examples and exercises.
- 2. Students are encouraged to use resources available on open sources.

Self study component :

- 1. Analysis of two-way classified data with interaction
- 2. Tukey's method of multiple comparison test

	Formative Assessment for T	`heory	
	Assessment Occasion/ type	Marks	
Iı	nternal Test 1	15	
In	nternal Test 2	15	
Assignment/Seminar	r (7 marks)+Attendance(3marks)	10	
	Total	40 Marks	
Course Title	Design and analyses of	Practical Credits	2
	experiments (Practical)		
Course Code	STCP 302	Contact Hours	60 Hours
Formative	25 Marks	Summative	25 Marks
Assessment		Assessment	
	Practical Content		1
1. ANOVA fo	or one-way classified data.		
2. ANOVA fo	or two-way classified data.		
3. Analysis of	CRD.		
4. Analysis of	`RBD.		
5. Analysis of	LSD.		
6. Missing plo	ot techniques in RBD and LSD.		
7. Analysis of	² ² factorial experiment using RBD layo	ut.	
8. Analysis of	² ³ factorial experiment using RBD layo	ut.	
9. Analysis of	2 ³ factorial experiment using RBD layo	ut (Complete confoundin	g).
10. Analysis of	2 ³ factorial experiment using RBD layo	ut (Partial confounding).	

Pedagogy: Practical assignments 1 to 10 have to be first solved manually (using scientific calculators) and executed using R-programming.

Formative Assessment for Practical			
Assessment Occasion/ type	Marks		
Internal Test 1	10		
Internal Test 2	10		
Attendance	5		
Total	25		
	Marks		

	References
1	Goon, A. M., Gupta, M. K., Das Gupta, B.(1991). Fundamentals of Statistics, Vol-I, World Press,
	Calcutta.
2	Montgomery. D. C. (2014): Design and Analysis of Experiments, Wiley. New York.
3	Joshi. D. D. (1987): Linear Estimation and Design of Experiments, New Age International (P)
	Limited, New Delhi.
4	Cochran. G and G. M. Cox, G. M. (1992): Experimental Designs, John Wiley and Sons, New York.
5	Mukhopadhyay. P (2015): Applied Statistics, Books and Allied (P) Ltd., Kolkata.
6	Giri N C And Das M.N (1979) Design and Analysis of Experiments, Wiley Easter

III B.Sc. Statistics Course Content of Semester– VI STCT 351: Theory Paper 7: Statistical Inference-II (Theory)

Program Name	B.Sc. in		Semester	VI
	STATISTIC	C S		
Course Title	Statistical Infer	ence-I	I (Theory)	
Course Code:	STCT 351		No. of Credits	04
Contact hours	60 Hours		Duration of SEA/Exam	2 hours
Formative Assessment	40	Sui	nmative Assessment Marks	60
Marks				

Course Pre-requisite(s):

Course Outcomes (COs):

After the successful completion of the course, the student will be able to: CO1. Basic aspects of decision theory and apply decision principles and Bayes and minimax decision rule.

CO2. Apply and interpret UMP test, MLR property and ikelihood ratio tests. CO3. Explore about sequential inference.

CO4. Apply one sample and two sample nonparametric tests.

Contents of Theory Paper 7	60 Hrs
Unit-1: Statistical Decision Theory	15 Hrs
Basic elements of Statistical Decision Problem. Expected loss, decision rules	
(nonrandomized and randomized), decision principles (conditional Bayes,	
frequentist), inference as decision problem, Lossfunction, squared error loss, Bayes	
and minimax decision rule.	
Unit-2: Testing of Hypothesis-II	20 Hrs
Definition of UMP test, monotone likelihood ratio (MLR) property, Examples of	
distributions having MLR property, Construction of UMP test using MLR property.	
UMP test for single parameter exponential family of distributions. Likelihood ratio	
(LR)tests, LR test for normal, exponential.	
Unit -3: Sequential Inference	10 Hrs
Need for sequential analysis, Wald's SPRT, ASN, OC Functions, examples based on	
Bernoulli, Poisson, Normal and exponential distributions.	
Unit-4: Nonparametric tests	15 Hrs

Nonparametric and distribution-free tests, one sample problems: Sign test,	
Wilcoxon signed ranktest, Kolmogorov-Smirnov test. Test of randomness	
using run test.	
General two sample problems: Wolfowitz runs test, Kolmogorov Smirnov two	
sample test (for sample of equal size), Median test, Wilcoxon-Mann-Whitney U-	
test. Several sample problems: Friedman's test, Kruskal Wallis test	

Course Articulation Matrix: Mapping of Course Outcomes (COs) with

Program Outcomes (POs 1-12)

		P	rogr	am	Ou	itco	me	s (P	Os)	
Course Outcomes (COs) / Program Outcomes		4	5	6	7	8	9	10	11	12
(POs)										
CO1. Understand expected loss, decision rules,		x					X	x		
decision principles and Bayes and minimax										
decision rule.										
CO2. Learn about UMP test, MLR property and		x					X	X		
Likelihood ratio tests.										
CO3. Explore about sequential inference.		x					X	x		
CO4. Learn about one sample and two sample		x					X	x		
nonparametric tests.										

Pedagogy:

- 1. The course is taught using traditional chalk and talk method using problem solving through examples and exercises.
- 2. Students are encouraged to use resources available on open sources.

Formative Assessment for Theory							
Assessment Occasion/ type	Marks						
Internal Test 1	15						
Internal Test 2	15						
Assignment/Seminar (7 marks)+Attendance(3marks)	10						
Total	40 Marks						

	CI 551. Statistical Inference-II (I	,	
Course Title	Statistical Inference-II (Practicals)	Practical Credits	2
Course Code	STCP 351	Contact Hours	60 Hours
Formative	25 Marks	Summative	25 Marks
Assessment		Assessment	
	Practical		L
	Content		
1. Problems on Bayes	s and minimax estimation.		
2. UMP test based or	a sample from Bernoulli and Poisson distri	outions.	
3. UMP test based or	a sample from Normal and exponential dist	ributions.	
4. Construction of SI	PRT for Bernoulli and Poisson distributions	5.	
5. Construction of SI	PRT for Normal and Exponential distribution	ons.	
6. Evaluation of SPR	T for Bernoulli and Poisson distributions u	using OC and ASN fun	ction.
7. Evaluation of SPR	T for Normal and Exponential distribution	s using OC and ASN f	unction.
8. One sample Nonpa	arametric tests: Kolmogorov-Smirnov test,	sign test, Wilcoxon sig	gned rank
test,			
9. Two sample Nonp	arametric tests: Mann-Whitney (Wilcoxon	rank sum test), Wald-	Wolfowitz
Run test, 10.Several	sample Nonparametric tests: Kruskal -Wal	lis test, Friedman's tes	t.
	l assignments 1 to 10 have to be first solved n		
and executed using R-r	-	5 6	,
	Formative Assessment for	Practical	
Assessment Occas	sion/ type]	Marks
Internal Test 1			10
Internal Test 2			10
Attendance			5
	Total	25	5 Marks

STCP 351: Statistical Inference-II (Practicals)

	References
1	Berger, J.O.(1985): Statistical Decision Theory and Bayesian Analysis, 2nd Edition.
	Springer
2	Bernando, J.M. and Smith, A.F.M.(1993): Bayesian Theory, John Wiley and Sons.
3	Robert, C.P.(2007): The Bayesian Choice: A Decision Theoretic Motivation, Springer.
4	George Casella, Roger L. Berger (2020): Statistical Inference, 2nd ed., Thomson Learning.
5	Rohatagi, V.K.: (2010): Statistical Inference, Wiley Eastern, New Delhi.
6	Hogg Mckean and Craig (2009): Introduction to Mathematical Statistics, 6 th edition
	,Pearson Prentice Hall.

STCT 352: Theory Paper 8: Sampling techniques and Statistics for national development (Theory)

Program Name	B.Sc. in STATIS	TICS	Semester	VI					
Course Title	Sampling techniques and Statistics for national development								
			(Theory)						
Course Code:	STCT 352		No. of Credits	04					
Contact hours	60 Hours		Duration of SEA/Exam	2 hours					
Formative Assessment Marks	40	Su	nmative Assessment Marks	60					

Course Pre-requisite(s):

Course Outcomes (Cos): After the successful completion of the course, the student will be able to:

CO1. Understand the principles underlying sampling as a means of making inferences about a population.

CO2. Understand the difference between probability and nonprobability sampling.

CO3. Understand different sampling techniques.

CO4. To learn to estimate population parameters from a sample.

CO5. Understand official statistical system in India and their functions.

CO6. Understand the role statistics in national development.

Contents of Theory Paper 8	60 Hrs
Unit 1: Introduction to sampling theory	10 Hrs
Objectives and principles of sampling theory; Concept of population and sample;	
Sampling design, Estimators, complete enumeration versus sampling; Planning,	
execution and analysis of a sample survey; practical problems at each of these stages;	
basic principle of sample survey; sampling and non-sampling errors; Types of sampling:	
non-probability and probability sampling, pilot survey.	
Unit 2: Simple random sampling	15 Hrs
Simple random sampling with and without replacement, definition, and procedure of	
selecting a sample, estimates of population mean, total and proportion, variances and SE	
of these estimates, estimates of their variances related proofs, sample size determination.	
	20 Hrs
Unit 3: Stratified sampling and systematic sampling	

Stratification and its benefits; basis of stratification, Technique, estimates of population mean and total, variances of these estimates, proportional, optimum allocations, Neyman's allocation, allocation with cost functions and their comparison with SRS. Practical difficulties in allocation, derivation of the expressions for the standard errors of the above estimators when these allocations are used, estimation of gain in precision, post stratification and its performance. Systematic Sampling: Linear systematic sampling Technique; estimates of population mean and total, variances of these estimates (N=n x k).						
Comparison of systematic sampling with SRS and stratified sampling in the presence of						
linear trend and corrections.						
Unit 4: National development						
An outline of present official statistical system in India, Role, function, and activities of						
Central and State Statistical organizations. Methods of collection of official statistics,						
their reliability and limitations. National statistical office (NSO), Registrar General						
Office and National Statistical Commission. Scope and content of Population census of						
India. Population census methods, economic census. Methods of national income						
estimation, problems in the estimation of national income. System of collection of						
Agricultural Statistics Crop yield, Production Statistics, Crop estimation and						
forecasting. Statistics related to industries,						
foreign trade, balance of payment, cost of living, inflation, educational and other social statistics.						

Course Articulation Matrix: Mapping of Course Outcomes (COs) with

Program Outcomes (POs 1-12)

	Program Outcomes (POs					Os)	s)					
Course Outcomes (COs) / Program Outcomes					5	6	7	8	9		11	12
(POs)												
CO1.Understand the principles underlying									x			
sampling as a means of making inferences about a												
population.												
CO2.Understand the difference between									x			
probability and nonprobability sampling.												
CO3. Understand different sampling techniques.									x			
CO4. To learn to estimate population parameters									x			
from a sample.												

CO5. Understand official statistical system in					x		
India and their functions.							
CO6. Understand the role statistics in national					x		
development.							

Pedagogy:

- 1. The course is taught using traditional chalk and talk method using problem solving through examples and exercises.
- 2. Students are encouraged to use resources available on open sources.

Formative Assessment for Theory									
Assessment Occasion/ type	Marks								
Internal Test 1	15								
Internal Test 2	15								
Assignment/Seminar (7 marks)+Attendance(3marks)	10								
Total	40								
	Marks								

STCP 352: Sampling techniques and Statistics for national development (Practical)

	Sampling techniques and	Practical Credits	2
Course Title	Statistics for national		
	development (Practical)		
Course Code	STCP 352	Contact Hours	60 Hours
Formative	25 Marks	Summative Assessment	25 Marks
Assessment			
	Practical Conten	t	
1. Drawing of ra	andom sample under SRSWOR from	a given population and estin	nation of
the mean and	total and the standard error of the est	imator.	
2. Drawing of ra	andom sample under SRSWR from a	given population and estimati	on of the
mean and tota	al and the standard error of the estima	tor.	
3. Construction	of Confidence Intervals for mean and	total for SRSWR and SRSW	OR.
4. Estimation of	the proportion, total and the standard	errors of the estimators base	d on a
random samp	le under SRSWR		
5. Estimation o	f the proportion, total and the stand	ard errors of the estimators l	based on a
random samp	le under SRSWOR.		
6. Estimation of	f the mean, total and the standard	error of the estimator under	r stratified
random samp	ling.		
7. Exercise on a	llocation of samples in Stratified sam	pling. (Proportional Allocatio	on)
8. Exercise on a	llocation of samples in Stratified sam	pling. (Neyman Allocation)	
9. Systematic sa	mpling		
10. Estimation tec	chniques in official statistics.		

Pedagogy: Practical assignments 1 to 10 have to be first solved manually (using scientific calculators) and executed using R-programming.

Formative Assessment for Practical		
Assessment Occasion/ type	Marks	
Internal Test 1	10	
Internal Test 2	10	
Attendance	5	
Total	25 Marks	

	References		
1	Cochran, W. G. (2007): Sampling Techniques, Third Edition, Wiley India Pvt. Ltd., New Delhi.		
2	Changbao Wu and Mary E. Thompson (2020): Sampling Theory and Practice, Springer Nature		
	Switzerland.		
3	Raghunath Arnab (2017): Survey Sampling Theory and applications (2017), Elsevier		
4	Des Raj and Chandhok P. (1998): Sample Survey Theory, Narosa Publishing House.		
5	Goon A.M., Gupta M.K. and Dasgupta B. (2001): Fundamentals of Statistics (Vol.2), World Press		
6	Murthy, M. N. (1967): Sampling Theory and Methods, Statistical Publishing Society, Kolkata.		
7	Mukhopadhyay P (2008): Theory and methods of survey sampling. Prentice-Hall of India, New		
	Delhi		
8	Mukhopadhyay, P. (1998): Theory and Methods of Survey Sampling. Prentice Hall		
9	Singh, D. and Chaudhary, F. S. (1986): Theory and Analysis of Sample Survey Designs, Wiley		
	Eastern Ltd., New Delhi.		
10	Sukhatme, P.V., Sukhatme, B. V.(1984): Sampling theory of Surveys with Applications, Indian		
	Society of Agricultural Statistics, New Delhi.		
11	Sampath S. (2005): Sampling Theory and Methods, Second edition, Narosa, New Delhi.		
12	Guide to current Indian Official Statistics, Central Statistical Office, GOI, New Delhi.		
	http://mospi.nic.in/		

B.Sc. Semester – VI MINOR PROJECT

Course Title: Project Work

Course Code: SBCS 351

Course Outcomes (COs): At the end of the course students will be able to:

CO 1: Accountable for individual and team responsibilities and deliverables.

CO 2: Exercise the ability to compromise and problem solve with involved parties.

- CO 3: Apply computing theory, languages, and algorithms, as well as mathematical and statistical models, and the principles of optimization to appropriately formulate and use data analyses
- CO 4: Formulate and use appropriate models of data analysis tolls to solve hidden solutions to business-related challenges
- CO 5: Interpret data findings effectively to any audience, orally, visually, and in written formats.

Expt.	Title:	
No		6m
1	Identifying appropriate problem for the Project work. Specifying aim,	
	objective and hypothesis.	
2	Choice of suitable secondary/primary data from data source for the project work.	
3	Develop and deliver engaging training sessions on various data science topics,	
	including statistical analysis, machine learning, and data visualization	
4	Create comprehensive training materials, such as presentations and hands-on	
	exercises, to facilitate effective learning for the students.	
5	Provide guidance and support to students, helping them solve problem	
	undertaken for the statistical analysis and reinforcing their understanding of key	
	concept	
6	Collaborate to enhance and update curriculum, ensuring that it remains current	
	and aligned with industry trends.	
7	Conduct assessments and evaluations to measure student progress and identify	
	areas for improvement, adapting teaching strategies accordingly.	
8	Presentation of the Project work carried and reporting the findings	
9	Preparing the Project report giving Aim, Objectives, Data source, Material and	
	methods used, Data Analysis and Conclusion.	

Formative Assessment for Practical		
Assessment	Distribution of Marks	
Collection of Data, Participate in project planning	10	
Analyze data using models and descriptive statistics	10	
Presentation of Project Work	10	
Documentation of the project Report	20	
Total	50 Marks	

Formative Assessment as per guidelines.

Formative Assessment: Total 40 marks	
Assessment Occasion/type	Marks
InternalTest1	15
InternalTest2	15
Assignment/Seminar/ Data Analysis(07 marks) +Attendance(3marks)	10
Total	40

Theory question paper pattern

	No. of questions to be answered	Marks
Part A	Three questions out of Six questions	2 X 3 = 06
Part B	Four questions out of Eight questions	6 X 4 = 24
	Three questions out of SIX questions	
Part C	Each question may have sub	$10 \ge 3 = 30$
	questions	
Total		60

Note :

- 1. Atleast one -two mark questions should be asked from each unit
- 2. Two- Six mark questions should be asked from each unit
- 3. Atleast one -ten mark questions should be asked from each unit

Practical Examination:

- 1) Students will have to answer any four questions out of 8 questions. All questions carry equal marks.
- 2) Practical paper in each semester carries 50 marks and the split up of the practical marks are as given below.
- a) Three hour examination carrying 20 marks with two examiners which includes at least one external examiner .
- b) Five marks for class records.

c) Fifteen marks to be allotted for the preparatory practical examination and continuous assessment during practical classes.(15 + 5(timely submission of record) + 5(attendance)